Guy R. Biyogmam

 




Undergraduate Research Supervision

Selected Talks


Research Papers


PUBLICATIONS

  • Leibniz (Co)Homology of the Lie algebra of the Indefinite orthogonal Lie Algebra,Afr Diaspora J. Math. Vol. 19 (2016). no. 1, pp. 37 - 48 PDF

  • A Relative Theory for Leibniz n-Algebras, Algebra Colloquium 23 : 2, (2016), 219-226. PDF.

  • On The Harmonic Oscillator Algebra, Communications in Algebra, 44, Issue 1, (2016), 164-173. PDF.

  • A Note on Intuitionistic Fuzzy n-racks,Scientiae Mathematicae Japonicae, e-2015, 109-115 PDF.

  • Lie Central triple Racks, I. E. J. of Algebra, 17 (2015) 58-65 PDF.

  • Low Dimensional Homology groups of the Orthosymplectic Lie Superalgebra osp(1,2n), Euro. J. of Pure and Applied Math 7(4) (2014), 395-404 . PDF.

  • Introduction to gb-Triple systems, ISRN Algebra, vol. 2014, Article ID 738154, 5 pages, 2014. PDF.

  • Leibniz Homology of the Galilei Algebra, Journal of Mathematical Physics 54, 073514 (2013). PDF.

  • A Study of n-Subracks, Quasigroups and Related Systems 21, (2013) 11-20. PDF.

  • A Fuzzy Approach on n-racks, Int. J. of Math. and Stat. 13(1), (2013) 20-27.PDF.

  • (With O. Heubo and J. Nganou) Super Implicative Hyper BCK-Algebras, Int. J. of Pure and Applied Mathematics 76(2), (2012) 267-275. PDF

  • Lie n-racks, C. R. Acad. Sci. Paris 349, Issues 17-18, (2011) 957-960. PDF.

  • On the Leibniz (Co)Homology of the Lie algebra of the Euclidean group, Journal of Pure and Applied Algebra 215 (2011) 1889-1901.PDF.


    Other Peer-reviewed Notes

  • A History of De Rham Cohomology (A teaching Module with historical sources)[2008]. Find it here

  • A translation of Euler's paper (from French to English) posted on Euler's archives(E724): Recherches sur quelques integrations remarquables dans l'analyse des fonctions a deux variables connues sous le nom de differences partielles [2009].


PAPERS SUBMITTED

  • On Lie-isoclinic Leibniz algebras.(Submitted PDF)---(co-authored with J. M. Casas)

  • On the Schrodinger Algebra.(Submitted PDF)


PAPERS IN PREPARATION

  • Ultraproduct of Leibniz Algebras.




HOME