Representations of the Euclidean Group

Tom McNamara

Department of Mathematics, SWOSU

April 12, 2014
Overview

1. Introduction

2. Concrete Example

3. Induced Representation

4. Big Theorem
Suppose G is a group and we want to understand its representations.

Suppose further that $H \leq G$ and we already know the representations for H.

Is there any way to use these representations of H to construct a representation of G?
Let G be any metrizable locally compact group. We will say G is an LC group for short.

(π, V_π) is a unitary representation of G if all of the following conditions hold.

1. V_π is a Hilbert space.
2. $\pi : G \to GL(V_\pi)$ is a homomorphism.
3. The map $G \times V_\pi \to V_\pi$ with $(g, v) \mapsto \pi(g)v$ is continuous.
4. $\langle \pi(g)u, \pi(g)v \rangle = \langle u, v \rangle$ holds for all $g \in G$ and $u, v \in V_\pi$.
We say a closed subspace $W \subset V_\pi$ is invariant if

$$\pi(g)w \in W$$

for all $g \in G$ and all $w \in W$.

π is called an irreducible representation if V_π has no proper, non-trivial invariant subspaces.
We say two representations \((\pi, V_\pi)\) and \((\rho, V_\rho)\) are *equivalent* if there is a unitary operator \(A : V_\pi \rightarrow V_\rho\) such that

\[
\begin{array}{ccc}
V_\pi & \xrightarrow{A} & V_\rho \\
\pi(g) & \downarrow & \rho(g) \\
V_\pi & \xrightarrow{A} & V_\rho
\end{array}
\]

commutes for every \(g \in G\).
We let \hat{G} denote the set of equivalence classes of unitary irreducible representations of a group G.

Some classes of groups where \hat{G} has been studied extensively:

- **finite groups** – every representation acts in a finite dimensional space
- **compact groups** – \hat{G} is discrete
- **locally compact abelian groups** – irreducible representations are one-dimensional.
Overview

1. Introduction

2. Concrete Example

3. Induced Representation

4. Big Theorem
We consider the full group of isometries on \mathbb{R}^2 containing rotations and translations.

These operations commute amongst themselves, but not with each other.

The representations of T and \mathbb{R}^2 are already well understood.
Notation for this Euclidean Group

We take the natural action of T on \mathbb{R}^2 given by

$$R(\theta)x = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \cos \theta - x_2 \sin \theta \\ x_1 \sin \theta + x_2 \cos \theta \end{bmatrix}.$$

The action of \mathbb{R}^2 on itself will be translation.
We take elements of the full Euclidean group to have the form

\[(R(\theta), v)\]

where \(R(\theta)\) is a rotation matrix and \(v \in \mathbb{R}^2\).

If \(x \in \mathbb{R}^2\), we define the action

\[(R(\theta), v) \cdot x = R(\theta)x + v.\]
This is a non-Abelian Group

We calculate that

\[\left[(R(\phi), w)(R(\theta), v)\right] \cdot x = (R(\phi), w) \cdot [R(\theta)x + v] = R(\phi + \theta)x + R(\phi)v + w.\]

The other order gives

\[\left[(R(\theta), v)(R(\phi), w)\right] \cdot x = (R(\theta), v) \cdot [R(\phi)x + w] = R(\phi + \theta)x + R(\theta)w + v.\]
Conjugation in $G = \mathbb{R}^2 \rtimes T$

We note that $(R(\theta), v)^{-1} = (R(-\theta), -R(-\theta)v)$.

Conjugation in our group is non-trivial.

However, if we conjugate and element of $\mathbb{R}^2 \leq G$, things simplify considerably. We compute that

$$(R(\theta), v)^{-1}(1, w)(R(\theta), v) = (1, R(-\theta)w).$$

Thus, we see that \mathbb{R}^2 is a normal subgroup of G.

Overview

1. Introduction
2. Concrete Example
3. Induced Representation
4. Big Theorem
The key elements of creating representations for $G = N \rtimes H$:

1. Use the G action on N to create a G action on \hat{N}.
2. Consider the G-orbits in \hat{N}.
3. Account for any stabilizers.
4. Form the induced representations.
5. Inducing from elements in the same orbit will yield equivalent representations.
Induced Representations of $G = \mathbb{R}^2 \rtimes T$

Fact: $\hat{\mathbb{R}}^2 \cong \mathbb{R}^2$ and each representation has the form

$$\chi_y(x) = e^{2\pi i \langle y, x \rangle}$$

for some $y \in \mathbb{R}^2$.

We define a G action on $\hat{\mathbb{R}}^2$ by

$$(R(\theta), v) \cdot \chi_y(x) = (R(\theta), v) \cdot \chi_y(1, x)$$

$$= \chi_y \left[(R(\theta), v)^{-1} (1, x) (R(\theta), v) \right]$$

$$= \chi_y (1, R(-\theta)x)$$
We can now see that \((R(\theta), \nu) \cdot \chi_y(x) = \chi_y(R(-\theta)x)\).

Using the definition of \(\chi\) and the fact that \(R(-\theta)\) is an orthogonal matrix, we see that

\[
(R(\theta), \nu) \cdot \chi_y(x) = \chi_y(R(-\theta)x) \\
= e^{2\pi i \langle y, R(-\theta)x \rangle} \\
= e^{2\pi i \langle R(\theta)y, x \rangle} \\
= \chi_{R(\theta)y}(x)
\]
By the above, we can see that there are two classes of G orbits.

1. Circles, radius r, centered at the origin
2. The singleton $\{0\}$.

We make the distinction because each class has a different stabilizer.
The Circular Orbits with $r > 0$

Given any $\chi_y \in \hat{N} \setminus \{0\}$, the stabilizer is $\mathbb{R}^2 \leq G$.
The only element of T that fixes χ_y is the identity.
Thus, we get our irreducible unitary representations of G by

$$\pi_y = \text{ind}_{\mathbb{R}^2}^G (\chi_y)$$

and $\pi_y \cong \pi_b$ if and only if $\|y\| = \|b\|$.
The Little Group

Suppose that we are creating representations of $G = N \rtimes H$. In general, if $\chi \in \hat{N}$, we let G_χ denote the stabilizer.

The *little group* H_χ is defined to be

$$H_\chi = H \cap G_\chi$$

and we form or representations for G by defining

$$\pi = \text{ind}_G^{G_\chi} (\chi \rho)$$

where $\rho \in \hat{H}_\chi$.
Here the stabilizer is all of G. Thus, the little group is all of T.

Fact: $\hat{T} \cong \mathbb{Z}$ with the representations g_n given by $t \mapsto t^n$.

The representations of G from this orbit are given by

$$\pi_n = g_n$$

Thus, the representations of G are given by this family:

$$\{\pi_r | r > 0\} \cup \{\pi_n | n \in \mathbb{Z}\}$$

According to the following theorem, these exhaust \hat{G}.
Overview

1. Introduction
2. Concrete Example
3. Induced Representation
4. Big Theorem
Theorem Concerning Induced Representation

Suppose $G = N \rtimes H$ where N is abelian and G acts regularly on \hat{N}. If $\nu \in \hat{N}$ and ρ is an irreducible representation of H_ν, then $\text{ind}_{G_\nu}^G (\nu \rho)$ is an irreducible representation of G, and every irreducible representation of G is equivalent to one of this form. Further, $\text{ind}_{G_\nu}^G (\nu \rho)$ and $\text{ind}_{G_{\nu'}}^G (\nu' \rho')$ are equivalent if and only if ν and ν' belong to the same orbit, say $\nu' = x\nu$ and $h \mapsto \rho(h)$ and $h \mapsto \rho'(x^{-1}hx)$ are equivalent representations of H_ν.