Synthesis and X-ray Crystal Structure
Determination of the First Transition Metal Complexes of the Tetracycles Formed by Tetraazamacrocycle—Glyoxal Condensation:
PdL2Cl\textsubscript{2} (L = Cyclam—Glyoxal Condensate (1), Cyclen—Glyoxal Condensate (2))

Timothy J. Hubin,‡ James M. McCormick,† Nathaniel W. Alcock,‡ and Daryle H. Busch* †

Chemistry Departments, University of Kansas, Lawrence, Kansas 66045, and University of Warwick, Coventry CV4 7AL, England

Received June 10, 1998

Tetraazamacrocycles are famously prolific ligands for transition and other metal ions, adopting numerous geometries and binding modes. Countless derivatizations of the monocyclic macrocycles cyclam (1,4,8,11-tetraazacyclotetradecane) and cyclen (1,4,7,10-tetraazacyclododecane) alone have produced pendant arm, bicyclic, tricyclic, tetracyclic, and linked forms of these workhorse ligands and their corresponding metal complexes.1–3 Surprisingly, the ability to complex with transition metal ions has not been demonstrated for one well-known type of derivative;4–7 the glyoxal condensation products of the parent tetraazamacrocycles synthesized according to Scheme 1.6

We now report the synthesis and crystal structure determination of two novel PdII complexes of the general formula PdLCl\textsubscript{2} where L is either variant 1 or 2 of the tetraazamacrocycle—glyoxal condensation products (1 = cis-decachydro-1H,6H-3a,5a,8a,10a-tetraazapyrene, and 2 = cis-decahydro-2a,4a,6a,8a-tetraazacyclpent[1]gacenanephylene), derived from cyclam and cyclen, respectively.

The tetracyclic condensation products of glyoxal and tetraazamacrocycles have been known for over twenty years.8–9 These interesting organic molecules are formed when each aldehyde functional group reacts with two secondary amines.3 These reactions are highly exothermic and can be obtained only under certain conditions and gives a more nearly flat structure.10 Both kinetic3 and thermodynamic9 arguments have been offered to explain the preference for the cis structure.

As a result of the cis configuration, the lone pairs of the potential nitrogen donors are not all oriented toward the same side of the macrocycle plane. In fact, adjacent nitrogens direct their electron pairs to opposite sides of the macrocycle plane, resulting in a ligand with two nonadjacent nitrogen lone pairs directed into the concave fold while the other two nonadjacent nitrogen lone pairs point out from the convex side (Figure 1). It has been suggested that this arrangement might interfere with coordination to metal ions by these rigid tetracyclic molecules.5 However, we predicted, on the basis of molecular modeling studies, that the two nitrogens with lone pairs converging inside the concave fold could bind transition metals in a didentate fashion, if an adequate match in size and geometry was made with the metal ion. We were encouraged in this belief by the crystal structure of the diprotonated salt of 1, in which both protons are found inside the cleft and bound to the two inward-facing nitrogens.11 Replacement of these two protons by a single transition metal ion appeared plausible. PdII, a relatively large ion, with a preference for a square planar geometry was chosen to attempt such a complexation.

The [1+1] condensations of cyclam and cyclen with glyoxal were achieved by literature methods.6 Complexation with PdII was carried out by reacting the tetracyclic ligands with 1 equiv of PdCl\textsubscript{2} in acetonitrile at 40–50 °C for 20 h under nitrogen (Scheme 2). Filtration yielded the crude products as green, finely divided solids, which were then dissolved in methylene chloride and filtered through Celite to remove traces of black solids.

Scheme 1. Condensation of Glyoxal with Tetraazamacrocycles to Give Tetracyclic Tetraamines; Ligand 1 Is the Cyclam Derivative, and Ligand 2 Is the Cyclen Derivative

* Corresponding author.
‡ University of Warwick.
§ University of Kansas.
1 University of Warwick.
Scheme 2. Reaction of PdCl₂ with the Tetracyclic Tetraamine 1. Forming the Novel PdII Complex in Which the Ligand Is Bound in a Bidentate Manner; Not Shown Is the Corresponding Reaction with 2

The orange filtrates were then either evaporated or precipitated with ether to give the pure yellow-orange solid products in 57–60% yield. Orange-red crystalline blocks of both complexes were grown by the slow evaporation of methylene chloride.

The molecular structures of Pd(1)Cl₂ and Pd(2)Cl₂ were determined crystallographically as tetracoordinate PdLCl₂ (Figure 2). Both structures have PdII in its usual square planar geometry, bound to the two concave-directed nitrogens of the tetraazatetraacyclic and to two chloride ligands in a cis arrangement. The tetracycles show the folded cis geometries characteristic of the free base; the cis structure has been determined for 1 and predicted for 2. The structure of Pd(2)Cl₂ is the first crystallographic characterization of the folded nature of 2 and confirms that the smaller tetracyclic system behaves like the more fully characterized 1. The PdII ion fits nicely into the clefts formed by the ligand folds, exhibiting normal bond angles and lengths. For Pd(1)Cl₂: Pd–N = 2.099(2) Å and 2.114(2) Å, Pd–Cl = 2.3001(5) Å and 2.3121(5) Å, N–Pd–N = 84.65(6)°, N–Pd–Cl(cis) = 91.32(5)° and 91.60(4)°, Cl–Pd–Cl = 92.48(2)°. For Pd(2)Cl₂: Pd–N = 2.086(3) Å and 2.079(3) Å, Pd–Cl = 2.2953(9) Å and 2.2973(9) Å, N–Pd–N = 83.61(13)°, N–Pd–Cl(cis) = 91.22(9)° and 92.62(10)°, Cl–Pd–Cl = 92.55(4)°. Spectroscopic results for the complexes are consistent with square planar PdII structures and include H and ¹³C NMR, IR, and UV–vis experiments. Cyclic voltammetry of the complexes showed no reversible oxidations or reductions.

An interesting comparison between these complexes and the few complexes of a related pentacyclic hexamine “tetraaminal” can be drawn. The ligand used in those studies is a [2+2] condensation product of glyoxal and dihydrobenzenetramine (Figure 3) and has been found to coordinate to Cd²⁺ and Mn²⁺ in a tetradentate fashion. Synthesized from two linear triamines, this pentacycle is much more elongated than our “modular” tetracyclic ligands. This characteristic, along with the presence of six potential nitrogen donors, four of which direct their lone pairs into the much wider and deeper cleft formed in the coordinated ligand (and allowing tetracoordination reminiscent of 2,5-diaminopiperazine), demonstrate the greater flexibility of this ligand as compared to our more constrained, more rigid tetracycle. In fact, isomerization from the centrosymmetric free ligand structure to the axially symmetric coordinated configuration is necessary and may occur through a sequence of reactions, such as solvent addition—configurational change—solvent elimination, in the methanol solvent used for formation of the complexes. The smaller tetracyclic tetraaminines of our complexes show none of this facile configuration change and appear much more rigid and configurationally stable, although capable of only bidentate coordination.

Physical Techniques. Mass spectra (fast atom bombardment) were obtained using a VG ZAB HS spectrometer equipped with a xenon gun; an NBA (nitrobenzyl alcohol) matrix was used. Electrochemical experiments were performed on a Princeton Applied Research model 175 programmer and model 173 potentiostat using a homemade cell. A button Pt or glassy carbon electrode was used as the working electrode with a Pt-wire counter electrode and a Ag-wire pseudo-reference electrode. All electrochemical measurements were carried out under N2 in dry, oxygen-free CH2CN solutions which contained 0.1 M tetrabutylammonium hexafluorophosphate as the supporting electrolyte. The potentials vs SHE were determined using ferrocene as an internal reference. 1H and 13C NMR spectra were recorded with Bruker DRX400 spectrometer. IR spectra were recorded as KBr disks using a Perkin-Elmer 1600 FTIR spectrometer. Electronic spectra were recorded using a Cary 3 spectrophotometer controlled by a Dell Dimension XPS P133s computer.

Synthesis of Ligands. The ligands 1 and 2 were synthesized according to literature procedures.6

Synthesis and Characterization of [Pd(1)Cl2]. To 0.222 g (0.001 mol) of 1 dissolved in 15 mL of acetonitrile, under nitrogen, was added 0.176 g (0.001 mol) of PdCl2 with stirring. The mixture was allowed to stir for 20 h at 40–50 °C before it was cooled and filtered to give the crude product, a dark green solid. This crude product was allowed to dry in the air overnight, then dissolved in 100 mL of methylene chloride and filtered through Celite to remove traces of black solids. Precipitation of the solvent yielded 0.228 g, or 57%, of the pure orange-yellow crystalline product. The FAB mass spectra (fast atom bombardment) were obtained using a VG ZAB HS spectrometer equipped with a xenon gun, yielding 0.223 g, or 60%, of pure product. The FAB mass spectra (fast atom bombardment) were obtained using a VG ZAB HS spectrometer equipped with a xenon gun, yielding 0.223 g, or 60%, of pure product. The FAB mass spectra (fast atom bombardment) were obtained using a VG ZAB HS spectrometer equipped with a xenon gun, yielding 0.223 g, or 60%, of pure product.

Synthesis and Characterization of [Pd(2)Cl2]. To 0.194 g (0.001 mol) of 2 dissolved in 15 mL of acetonitrile, under nitrogen, was added 0.176 g (0.001 mol) PdCl2 with stirring. The mixture was allowed to stir for 20 h at 40–50 °C before it was cooled and filtered to give the crude product, a green solid. This crude product was allowed to dry in the air overnight, then dissolved in 100 mL of methylene chloride and filtered through Celite to remove traces of black solids. Precipitation of the solvent yielded 0.222 g, or 60%, of pure product.

Data Collection and Processing. Siemens SMART16 three-circle system with CCD area detector. Both crystals were held at 180(2) K with the Oxford Cryosystem Cryostream Cooler;17 maximum theta was 28.54°.

Pd(1)Cl2, hkl ranges —9/5, —20/19, —16/17. of 8461 reflections measured, 3363 were unique [R(int) = 0.0308]. Absorption correction by ψ scan; minimum and maximum transmission factors: 0.73; 0.86.

Pd(2)Cl2, hkl ranges —17/17, —11/15, —10/10. of 7158 reflections measured, 2505 were unique [R(int) = 0.0189]. Absorption correction by ψ scan; minimum and maximum transmission factors: 0.81; 0.93.

Structure Analysis and Refinement. The structures were solved by direct methods using SHELXS (TREF)18 with additional light atoms found by Fourier methods. Hydrogen atoms were added at calculated positions and refined using a riding model. Anisotropic displacement parameters were used for all non-H atoms; H-atoms were given isotropic displacement parameters equal to 1.2 times the equivalent isotropic displacement parameter of the atom to which the H-atom is attached. The weighting scheme was calculated as w = 1/[σ(F02)2 + (αP)2 + βP] where P = (F02 + 2F2)/3. Refinement used SHELXL96.19

Pd(1)Cl2, Systematic absences indicated space group P21(1)/n. a(weight) = 0.0243; b(weight) = 0; goodness-of-fit on F2 = 0.953, R1[for 2924 reflections with I > 2σ(I)] = 0.0210, wR2 = 0.0502. Data/parameter ratios 3363/173. Extinction coefficient 0.0053(3). Largest difference Fourier peak and hole 0.380 and −0.609 e Å−3.

Pd(2)Cl2, Systematic absences indicated either space group Pnma or Pn21a (nonstandard setting of Pna21, chosen to allow ready comparison with the alternative of Pnma). The initial solution was in Pnma, but showed disorder in the ligand framework. It was found that an ordered ligand could be found in the noncentrosymmetric space group, although with extensive racemic twinning. This refined to a considerably better R value than in Pnma, where R = 0.040 was the best that could be achieved, with the ligand totally disordered across the mirror plane containing Pd, two Cl, and two N. The ultimate distinction is between disorder on a cell level, with nearby cells containing the alternative forms, and disorder on a domain level, with noncentric crystallites arranged randomly. The forms of the displacement ellipsoids shows that some residual rotational or mirror disorder is still present. Refinement of a delta-f′′ multiplier showed the crystal to be a racemic twin, absolute structure parameter x = 0.54(7); a(weight) = 0.016; b(weight) = 4.38; goodness-of-fit on F2 = 1.045, R1[for 2070 reflections with I > 2σ(I)] = 0.0277, wR2 = 0.0635. Data/restraints/parameters 2505/175. Extinction coefficient 0.0222(19). Largest difference Fourier peak and hole 0.912 and −0.657 e Å−3.

Acknowledgment. Support of this work by the Procter and Gamble Company is gratefully acknowledged. T.J.H. thanks the Madison and Lila Self-Graduate Research Fellowship of the University of Kansas for financial support. We thank EPSRC and Siemens Analytical Instruments for grants in support of the diffractometer. The Kansas/Warwick collaboration has been supported by NATO.

Supporting Information Available: Electronic spectra, cyclic voltammograms; tables of atomic coordinates and equivalent isotropic displacement parameters, bond distances and angles, anisotropic displacement parameters, hydrogen coordinates, and isotropic displacement parameters for Pd(1)Cl2 and Pd(2)Cl2 (9 pages). Ordering information is given on any current masthead page.

IC9806380